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ABSTRACT

In Section I the Rayleigh reflection doefficient for a rough
surface is derived in a form suitable for inclusion in the |
basic integral for the scattered pressure. A formula for the i
pressure scattered from a rough attenuating surface is then

derived using this coefficient. The backscattered intensity

is calculated in Section II for various assumed distributions i
of surface heights. The results presented here are restricted

to the high frequency limit, and are developed using both the

stationary phase and the modified Fresnel techniques. Finally,

a backscattering result for a composite surface is derived,

and 1s shown to be consistent for both forward and backward

scattering. ¥
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T. SCATTERED PRESSURE FROM A RANDOMLY ROUGH ATTENUATING SURFACE

During this quarter it was discovered that the expressions given
in the previous progress report for the Rayleigh reflection coefficient
for a rough surface were inad?quate. The results given previously
were only approximate due to an error in the method in which‘Snell's
law was applied to the coefficient. This quarter a more complete
and accurate treatment of this problem was derived. The following
derivation differs from the original treatment of the problem not only
in the form of the Rayleigh coefficient itself, but also in that the
coefficient is used in the context of the original integral for the

scattered pressure.

The scattered pressure at point A is given by the integral

ikr1
1 d e
o \T )
p (A} = = [[ps(l-)gi o) ds 2 (1)
5

N is a variable point on the surface,

where

n 1is the outward normal to the surface, and

r, is defined in Dwg. AS-68-1100. The exact form of the Kirchhoff

boundary condition is
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where pS(N) and pi are the values of the scattered and incident

pressures on the surface and R is the Rayleigh reflection coefficient

which will later be shown to be a function of the locsl slope of the

surface. If it is now assumed that the incident pressure is of the

form

1k
. o)
p. =F b
i o ry
it is then obvious that
ikr
- o
PS(N) = RPO ro P)

ikro ikrl
)
p_(A) = %;-d/i}ff§> - ——Jas
S 9% o\ r on &
o 1
.

Following the development given in Section I1I - D of the Final

under Contract 1100024-69-0-1275, this integral becomes

ik(R +R
()

)

(3)

—~
T
St

(5)
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ps(A) 2n f/ Poh RoRl - (Cxex+‘y'ey ez) el 0 (6)
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= gi + sin6 .
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and él is a unit vector directed along line Rl' Continuing this

derivation, it is now assumed that

SasEa=n oy
8y . 81 = coser i (8)
gz . 81 = sinGr
so that
<§X€X+Cy8y-€z) . %l = -sin9r + Cycos@r p (9)

Thus the integral for the scattered pressure is

ik(R +R.)
ik L [ oL i
pS(A) %o E RE, e R(-51n6r+ ycos ri]dzdy < (109)

Before this integral can be further simplified, a suitable expression
for the Rayleigh coefficient must be derived. Referring to

Dwg. AS-T70-795, the Rayleigh reflection coefficient is given by

c.sind. - o sind
G e W s

]

R(®1,®2) 3 11}

D C8End. + ¢.sind .
Sgre 1 " Py
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where ¢. = 61 + B and bp

1 8s + B . (12)
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At this point Snell's law must be applied to the formula by making the

substitution

sin®, = Jl - cosgmm =
2 2

s
N~ - cos @ , £15)

=] o]

where N is the acoustic index of refraction. Applying Eq. (12) and
Eq. (13) to Eq. (11) gives

0.cC -
< Al 1t 2 =
pEcgsln(91+B) e \IN - cos (81+B)

pc ~
\’ 2
é S N cosc(61+ﬁ)

(14)

pzcgsln(91+6) +

By expanding sin(61+6) and cos(91+6) and using various trigonometric

identities, this may be arranged into the form

A+ By -C ane 4= Enc kB

R(6,,1) = . (15)

A+ B 4+ € JDng + Eq + F
where
n = tanp , and (16)
A = ogcgsinel .
B = 02c2c058l :
g C
il

C = N ’ (17)
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For ease of application, R(Gl,q) is expanded in a Maclaurin seriles: t
{

2 2
OR 3R K- 3
[(919]) = R |T:O+gﬁ | +—_2' ?"' ) (]v)
‘ n=0 on
n=0
where
R 1=0 = , (](/'\)

4
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‘ @)
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brtpnenn

(21)

The first term of this series is Jjust the Rayleigh reflection

coefficient for a plane surface.

Since n is the tangent of B, it is obvious from Dwg. AS-T0-T79°
that n is Jjust the slope of the local tangent. Because the formula-
tion is restricted to the plane of incidence, it may be assumed that

n=fy. Using this in the original pressure integral gives

ik%(E +R,) ‘
ik N A Y v
p (A) = = 5 R b R(8, .’])(-:‘»5,1191_-4-'|lrm‘(gv\] dxdy
5
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At this point £ and 1 are recognized as random variables and the
integral for p (A) must be replaced by <pS(A)>. If it is assumed
that the surface height, ¢, and the surface slope, 7, are independent,

then the integral for <pc(A)> takes on the simple form

1k(P 5, )
< ,x)> = 1k // <lk/ >€(el,l )(-sing ,Fneosd >dxdy

]

Since it has been assumed that 7n is stationary and independent of €,

it may be shown that

ik el B
> = -7 = 2 A
<pS(A) <R(91,q)(l ‘COt9r>(?ﬂ ) /P081n61~ F Y
g <elk7C>dxdy

Since £ is also stationary, its expectation value may also be removed
from the integral, leaving only a form which is irmediately recognized

as the pressure scattered from a plane surface.

Js

=1t
(0> = [wo,)> - coto, <o, €N, ()
Assuming a Gaussian distribution of heights,

<p (A)> = [<R( 8,,m)> - coter<r.R(91,n)>] £ B, s 26




where
g = (kyo) ",
Br is the receiver angle, and

p 1s the pressure scattered from a plane surface.

v
This form is particularly simple to calculate due to the form of the
expansion of R(Gl.n). Rearranging terms of the series gives
Exr-_ cot9r<nF>] = [R(l - <h> Qot@r) + R'(<n> - <™ cetd )
B : 54
+3-(<T]>-<T]>C0t6v)+...] : (=)
Thus the only expectation values to be calculated are of the torm
o]
i ke
<> = n*p(n)an , (28)
—tan91

where the lower limit of -tanel represents a simple shadowing
concideration. For the Gaussian case these integrals are quite easy

THhL A

to calculate and become

) 1 i ¢ /
<~] D e— | i" . 4
-tané,
where s is the rms slope of the unshadowed surface.
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1 /. -9 =
<= ne e dn
V2ns
tanel
llow let
2 -
E =1 3 dé = 2ndn
so that
[o0]
-1 -——
<xf> - L /§2625 it
24/ 2rs
ta.n261

No. 3.381-3 (p. 317, 4th edition) and is found to be

o 4 2

(1+1) =
=\ tan 6

where I'(a,x) is the incomplete gamma function.

Yor the case where [ is an even integer

tanel 5
{ ) / £
<> = 2 / N P(n)dn + / 1" P(n)dy
o tun@l

10

For the case where [ is an odd integer, this becomes

’

This may be easily integrated using Gradshteyn and Ryzhik integral

(30)

(31)

(32)

rmery

(33)

s




Proceeding in a similar manner this gives

<1]Z'> ——1——(—1—) % z—t-l-,———-—,— + 2y £+—l,-—-—l

These values may be easily calculated and combined with the values

of R, OR 5 9—5 , etc., to find the value of |<E> - cot8 <qR>].
< n=0 Bna : &

unzo

The values of R, R', and R" will be complex because of the assumed
attenuation in the bottom, so the entire expression for the pressure
will also be complex. An initial numerical calculation was made using
only the first two terms of the expansion of R(Gl,n) which gave a
reasonable agreement with Mackenzie's theoretical curves, which were
presented in the previous progress report. However, the lack of agree-
ment in certain areas of the curves indicates the need to include

higher order terms in the calculation.




IT. BACKSCATTERING THEORY AND EXPERIMENT

A. Tntroduction

The analysis of experimental backscattering data proves much more

difficult than analysis of either forward or specular scattering data.
Many investigators have assumed a composite (several types of inde-
pendent irregularities) scattering mechanism in order to obtain the
desired fit to their experimental data. However, if the same composite
theory (with the same input parameters) is applied to forward scat-
tering predictions, satisfactory agreements are not obtained. In
addition, many composite treatments are limited to use of the nonana-
lytic exponential correlation function. In Section D of this chapter
a qualitative description of a composite theory (two types of roughness
in this case) is given which does not have these limitations. However,
the assumption of two types of irregularities requires that the

surface statistics be known in great detail. In fact, it is difficult
to see how the composite assumtion is going to help the backscattering

prediction problem other than to provide an "adjustable" parameter.

Section B will be devoted to an alternate method whiczh yield:
final results similar to those obtained by the composite approach by
using an exponential correlation function. The method used will be
the stationary phase technique developed in the Final Report under
Contract NOOO24-69-C-1275. The stationary phase equations yield

good agreement with the forward and specualar scattering data.
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B. Stationary Phase Backscatter

The basic formula for the stationary phase method is taken as
23. (49) from the Final Report under Contract NOOO2L-69-C-1275.
Equation (49) states that the scattering coefficient o (not the

scattering strength) can be written as follows:

< >

s
St

p
o0
2 AFg(r s, )7 (.22
- 32<é-ikﬂ{>_ i oo 1lo k7 J (v, r) e-ikw(“-fv) rdr
Z- P b on o' Xy
P F
oo lc o

X[l i C2<e-ik7.“>] } (26)

where the notation and geometry are used in the previocusly referenced
final report. Equation (36) is next integrated for the case of a

O

three-halves distribution of heights.

The marginal probability density function for the three-halve:

distribution of heights is given by

p(e) = —Re (37)

and the bivariate distribution is given by

p(7,7") = —— 1 _ (28)

t«m"(l-r)”“ 02 _orp roar vt
] 4 et
h(1-C“)




Cince a variance does not exist for these distributions, a converient

quantity to equate to the experimental rms height is given by the

interquartile range. The interquartile range can be written as — h.

2
-

The characteristic functions associated with Eq. (37) and Eq. (328)

can be stated as
-ikyt
<% 1k’i> = kyhK, (koh) (39)

é-ikﬂi-{')) _ o~ [ee(10)]? : (40)

2

a8 5
where g = k“7°h” and h = 0.866 h, (experimental rms height).

When Egs. (39) and (40) are used in Eq. (36) we obtain the

following scattering coefficient:

B g /g AP (r o try ) k=" ~[a(1-c)] " °
g =0 gKl(g ) + %% 5 uO(Vhyr)e rdr
Pt THY
00" lo
c
~ ~ 1 l2 ;
X E.~ anKi(g‘/ ﬂ ? (41)

The asymptotic form of Eq. (41) can be stated as

2l 2
R AF (r_+r_ ) & 2 e
KRl DQ%Kc(gl/z) N oo _lo K7y L . 1- 02k (172
nf s g e g on 3 /2 SRz
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where a Gaussian correlation function (with correlation length L)
has been assumed. If the full series expansion for Eq. (40) is

applied to Eq. (41), we obtain the following form:

Afzke(r +p )Qe_(zg)l/é o 2 -inLe/hn
2 12 A2 0o "lo 1 L%
o= ae(g”") + 52 nl T 2n
2nr r
00" 1o n=
(43)
m+1
R G L ik T BN | IRV
XZ Z - NPT l-p l(g ) -
= £ 2 (m-23+1)(3-1)'2
where the Gaussian correlation function again has been used. 1In
order to compare with other authors'work, Eq. (42) can also be
stated (for backscattering) as
2
ion A(r +r_ )
= 2 2 /
i B o PR e s -
1) N cr 2. L 5 318
oo lo 8n (cos d+Gsin ")
(L)

2.2, 1/2
x |1 - p7eK (g7 ") ’

where

5 o
= Lacosa®/2h y

Q
I

F = 1/cos®, and

? represents the angle of incidence, (i.e., d + 6 = 90 deg).

The expression in braces is of the same form obtained by Fung and
Leovaris [Ref. 1], Beckmann [Ref. 2], and Marcus [Ref. 3]. However,

these authors used the nonanalytic exponential correlation function

16 . !




in deriving their results. As recently shown by Barrick [Ref. 41,

the use of the exponential correlation is incorrect.

cince programming difficulties have occurred in the evaluat

12

on
of Bq. (43), only Ea. (42) will be compared with the experimental

data. Drawings AS-T0-11T74 and AS-70-1175 are two comparisonc of theory
with experiment. There are two ways these predictions can be improved:
(1) by using the full series form of Eq. (43) instead of just the
asymptotic form given by Eq. (42), and (2) by a more accurate evalua-
tion of the slope correction term F. The expression for F given in
this report is only the evaluation of the true sleope correction term
(-sing,, + §Xcose£) at the ctationary phase point ’x — -Vx/vz' The
resulting form for F is then taken out of the scattering integral. A
much more accurate way to predict backscattered results would be to
keep everything under the integral. When the above corrections are
included in the form for the backscatter coefficient, the comparison

of theory with experiment should be improved.

. Fresnel High Frequency Backscatter

The intensity equation from which the high freaquency backscatter
predictions will be made was derived in the Final Report under

“ontract N0002L-69-C-1275 and has the following form:

: -Pik[(F -Tx'_) + (F, -R! )]
k = - (6] (@} 1 |
\'I‘r-A(?-) f[f/m :
- 2x o 0 E R'R_1
o o 1 1

X (’ ~:C"'+’\',f7;,+3"’) . & >lr-' lydx ' dy"
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If the amplitude factor is disregarded, then Po is simply the
directivity pattern of the source. 1In the final report mentioned
previously and in the previous progress report under this contract,
the necessity of using a directivity pattern and the Fresnel phase
approximation was discussed. Also, an analytically tractable approxi-
mation for the directivity pattern was presented. The detailed
results for the intensity calculation based on the assumption of
Gaussian surface statistics were presented in the Final Report under
Contract NOOO24-69-C-1275. However, at that time only the forward
scatter results were presented. It was clear then that Gaussian
statistics were inadequate for backscatter prediction since they do
not predict the Lambert's Law type behavior, which occurs at small
grazing angles; consequently, an investigation of other types of

probability distributions of heights was undertaken.
Consider first how the stochastic nature of the problem is taken

into account. The principal gquantity of interest in Eq. (45) is the

bracketed expression
-ikY(Z-C') A A A A
+ . . 1a1 Vo o BN 2
<% (;xex Cyey ez) b | (Cxéx i C§éy ez) éi (L6)

If the processes { and {' are assumed to be hcmogeneous and the

following conventional approximations are made,

20




then according to Appendix B of the Final Report under Contract

100024-69-0'=1275, Fq. (46) has the eguivalent expression

I - e () (37 2K

29 -
cos = a—

i %: - W<> j

S

: / : - -ik7(€-") o
where \ is 2 natural notation for (e . In actually
performing the derivatives indicated in Fg. (48), it will be assumed
that the processes { and {' are also stationary; this implies ;

5h,5xi = O, where h is the rms value of the surface height. n

addition. for a stationary process the correlation function depends

only on the difference of the coordinates & = x-x' and 1 = y-y'.

B

resulting in a considerably easier integration.

The most interesting feature of Eq. (48) is that only knowledge
of the characteristic function and the correlation function is needed
tc determine the guantities in Eq. (46) completely. That is, the

probability distribution function that is reguired is o(f,f'). and

not w(€,t", ¢ ,t', t ,t'); as a result, the problem is much si
x77x’ Cyty '

The correlation functions that will be of interest in this progres:
report are the following:

GAUSSTAN: C(E,n) - e T (k)

EXPOUENTIAL: C(&,n) = e - {

and

HAWKER: C(&,1) - ———— ‘




|
i

It was pointed out in Section B that the exponential correlation

suffers from several disadvantages, most notably a lack of analiticity.
In view of this problem, a search was made for a function which would
behave like an exponential function moderately near the origin, and
yet still be an analytic function; the resulting function we have
named the Hawker correlation function. Therefore, in the actual
calculation of backscattering, only the Gaussian and the Hawker

correlation functions will be used.

It has previously been shown that the high frequency limits
(or asymptotic forms) of the intensity are obtained by expanding the
correlation function in series and retaining only the first two terms.
Thus, for the Gaussian and Hawker correlation functions the high

frequency limits are obtained respectively from

e .2
cle,n)y = 1 - =+ ... (52)
L
£24n° frs '
C(E,T])H= 1 - —2771—'4' “ \22)
L

So that no confusion results, it is necessary to keep in mind
that the parameter L, which is the correlation length, takes on

different values in the Gaussian and Hawker correlation functions.

In addition to the two correlation functions, three different
bivariate statistics will also be considered: Caussian, Exponential,
and Three-halves (Student's t with 3 degrees of freedom). The details
of the characteristic function calculations were presented in
Appendix A of the Final Report under NOOO2L-60-C-1275, so they will be
dispensed with here. In fact, most analytical details in the following

calculations will be omitted so that only the final results will appear.




. iaussian Bivariate Distribution

The characteristic function for the Gaussian bivariate

distribution is

<e-ik7(c-t. : )> . o8l1c)

Upon substitution of Egq. (52) in (54), one obtains

(£

)
2,
feat

<>.~ :eL s ()i>

5 o>
where g = 4 sin Grk h . When Eq. (55) is used in conjunction with

73, (48), the Fresnel phase approximation, and beam funcion

1. (45), the following result is obtained:

maticn in

) hcotze cotye cot 6 :
e >ka\ -G lr + e WPEIET k¢ i P S )

g = < 4+ =
7 GAUSSIAN s S 16s

(56)

w
I

and

A

16xKY. T

lo oo

Here A is the insonified elliptical area, and K is a constant related
to the beam function. This result will be discussed in conjiunctio

the results for the other bivariate distributions.




xponential Bivariate Distribution

’'ne characteristic function for the Exponential bivariate

listribution is

e-iky(f-f') i 1 59)
< > [1+§£( g G

which becomes upon substitution of Eg. (49),

e ) ! — . (60)
< > [1 + ;g—% (& ‘+u"“)]// h

- «~
3L

Using Eq. (60), the backscattered intensity is obtained in a manner

identical to the Gaussian calculation.

Geot“8
b ik

<‘ .>h.1. :(;;‘_7’_4 NSIERCTE i ‘\_'O't_"_v‘ = " 1'+ :
%/ EXPONENTIAL e 5 : N e”
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e Three-halves Bivariate Distribution

The high frequency version of the characteristics function

for the Three-halves bivariate distribution is

<>h.f. T : (62)

and from this the backscattered intensity is obtained as

h.f. 2cot <6 cot '
A G sd g 5/ ¢c
i cot @
1 + ———T—z (63)

It should be noted that the calculations leading to the
intensities given by Egs. (56), (61), and (63) were performed with
the Gaussian correlation function. Comparison in Egs. (52) and (5%)

shows that
L, «= L , (64)

Hence all of the results for the intensity calculated for the Gaussian
correlation function can be extended to the Hawker correlation
function by using the simple substitution given by Eg. (64). The

values of L, and Lp that give the best theoretical fits to the

experimentally measured correlation function are 1.4C in. and 1.1l% in.,

respectively. The slopes in each of the cases then become

and

bV 1. 24k . (66)




Comparing Eqs. (64) and (65), it appearc that in the high

frequency limit a surface characterized by a Hawker correlation
function behaves as a rougher surface than one characterized by a
Gaussian correlation function because of the greater rms slope (Sw>$m)'
This is an interesting feature since in the low frequency limit, the

opposite is true because the Hawker function has much greater correla-

.

tion than the Gaussian function in the tail,.

In addition to the functional similarity obtained when using
cither a Hawker or a Gaussian correlation function, there are several
other interesting features inherent in the high freguency
First notice that there is absolutely no freguency dependence in the
intensities given by Egs. (56), (61), and (63). Next, notice that
there is no height dependence; rather the roughness devendence is
ased strictly on the rms slopes. Finally, it is clear from the
parameter G that the intensity is area dependent and that the range
dependence is given by 1frloroo and not by geometrical acoustics, i.e.,
1/(r. 4r ). In previous reports, it has been shown that for planar
lo " oo
surfaces the geometrical acoustics range dependence 1 (r~_+r‘\) is ' Q
obtained as predicted by image theory, and there is no insonific :
area dependence for an infinite plane. Also, in the Final Report under
Contract NOQO24-69-C-1275 it was noted that £ moderately

surfaces at medium frequencies the range dependence was quasi-

|
reometrical acoustics, and there was little area dependence. Thus,
in passing to the high frequency limit, the Fraunhofer range dependence,

which has been characteristic of all other theories, is clearly

obtained. However, there must obviously be some transition region

which none of the other theories have taken into account. t hac been

claimed in some papers that even in the low freqguency limit (Eckart,

for example) the Fraunhofer range dependence is obtained.

.

e




The theoretical and experimental quantities compared in
Dwgs. AS-T70-1194, AS-70-1195, and AS-T70-1196 are the scattering
coefficients defined by Eq. (36):

&= <IS> (rlO+rOO)C 5] (67)

where the theoretical backscattered intensities given by Egs. (56),
(61), and (63) have been used. Care was taken in the selection of

the experimental data to be sure that they actually corresponded to

the high frequency limit. It is fairly certain that the data shown

for surfaces III and I are in the high frequency limit, since the

200 kHz and 500 kHz lie quite close together; that is, they exhibit

no frequency dependence. Another interesting aspect of the drawinge

is the notable lack of agreement between experiment and the theoretical
predictions. This was unexpected since the Three-halves and Exponential
distributions resulted in extremely good agreement between experiment
and theory for the coherent intensity and for the forward scattered
intensity. One of the most prominent aspects of the Three-halves
theory is the upturn in the predicted backscattered intensity at
grazing angles below 40 deg. If shadowing theory had been incorporated,
this feature would not be so pronounced even though it would still be
present. The reason for this behavior is that at low angles the
Three~halves distribution predicts that the major intensity component

will be given by

L
cot er
= = 5 coté (68)
o 5/; &
5 cot er
s |1 +
This type of dependence at low grazing angles is due strictly to the

inclusion of slope correction terms in the intensity integrals.

I—
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Examination of the stationary phase backscattered intensity exprescion

[Fq. (42)] does not reveal a similar difficulty since the slope was
Yy

evaluated at the stationary phase point in Eq. (L42).

Because of the lack of agreement in the theoretical and
experimental backscattering expressions, additional aspects on the
backscattering problem will have to be examined. In the next section,
for example, a qualitative investigation of composite surface scattering
will be given. Also, it is hoped that in the next progress report
the integrations of certain other promising bivariate distributions
will be completed, and some results for composite surfaces will be

available.

D. Composite Surface Theory

Recently there have been several attempts to explain backscattering
effects by using the composite surface model. However, as pointed
out in the introduction, these attempts have not given physically
consistent predictions for both backward and forward scattering. In
this section, qualitative arguments will be developed which show
that the composite nature of the surface can have a significant effect
only on the backscattered portion of the intensity. The small scale
roughness does not significantly affect the specular or the forward

scattered intensity.
Assume the random surface process is represented by

C(x,y) = £(x,y) + £ (x,y) : (69)

-

where €. and . are independent stationary random functions with

1 2
zero mean, each with its own statistical distribution and correlation

.




function. In addition, the processes are such that the rms values of

the heights obey:
h, >>h,, and A > h, ; (70)

Equation (70) merely implies that Cl represents some large scale
roughness while l’,c represents some small scale roughness. Here N is
the source wavelength, which must be about the same order of magnitude
or greater than hl'
Recall that for the pressure, the statistical quantity of interest

is given by

<[sin6r = (ql+q2)cos6r] . (e-ik7(Cl+C2))> . (71)

where 7, is defined as agi/ dy and is independent of Ci. Based on this

independence, Egq. (71) can be written as

sing, () - cose, () + OO (72) |

-iky(f
where <>represents e ©
stochastic average. If it is assumed that tw and ¢, are distributed

+ 2')

and agair the brackets mean the

in the same manner, then essentially

( > : x[}‘—”“<hi*h£)] ’ (73)

where X is the general notation for the characteristic function.




However, from Egq. (70), one sees that

< > = x[2 2(h +h )] X[kg"/ghi] . (74%)

Clearly, the swrall scale roughness is insignificant in the character-

istic function.

Now examine the averages Ny and qg. If shadowing is ignored,
then since C and C were zero mean random processes, it is known
that 11 and np are also zero mean random processes if £ 51 and §2 are
homogeneous. However, some very crude shadowing approximations can 5
be made. First recall that n is the tangent to the surface at the
point (x,y) on the surface. Then if the possibility of the point (x,y) k
on the surface being shadowed by some other near lying surface point :

is ignored, it can be claimed that the point is not shadowed if
- < < 5 i
tanei n tan@r ; (75) i

Hence the averages of nl and N, are not given by |

<le>=/wniw(ni)dni ; (76)

but rather by

tanb
T

¢, )+ / ngalnan, (77)

-tanf
<

since only those values of Ty that are not shadowed with respect to

both the source and receiver can contribute to the pressure integral.

W
N




In Eqs. (76) and (77), o(ni) is the probability distribution of ny
and will be required to be an even, zero mean functicn. With this in
mind, various cases of Eq. (77) can now be investigated. In the
specular direction tanei = taner, then <nl> and <n2> equal zero from
Eg. (77)- Also, in forward scatter tanei does not differ appreciably
from tanGr for most cases, and again <n1> and <n2> are essentially
zero. However, for backscattering tanei — o, and, depending on the
value of tan@r, the averages can differ appreciably from zero. For
normal incidence, taner — o, and again <nl> and <q:> are zero, but as

the grazing angle approaches zero, Eq. (77) becomes

oo

) = -/niw(ni)dni . (78)

o}

This is the case where <nl> and <n2> take on their greatest value.
Suppose that while the rms value of the heights of the large scale

roughness satisfies h >>h2 as can often be the case, the rms value of

1
the slopes of the small scale roughness, Sy satisfies ST>>S]‘ Then

<> =2 <n.>, and if h.>>h,, then Eq. (72) becomes
2 1 A e

2 2.9 2
3 " <n > = — Q
s:.nGr X[K 57 hl] + coser ‘12 X[k Y hl] : (79)

A good physical example of a composite process where this would be
true would be sand dunes made up of angular grainc of sand. The
heights of the dunes would be very much greater than the grain sizes,
but the slopes of the angular faces of the grains can be very much
greater than the slopes of the dunes. A realistic example of scat-
tering by this type of composite surface is the scattering of light

by seemingly flat snow fields.




Examination of Eq. (79) reveals the very interesting behavior

that can be exhibited by certain types of composite surfaces. For
most forward and for all specular scattering, the lead term, which
depends only on the large scale roughness, dominates. Also, for back-
scattering at near normal incidence, the lead term dominates; that

is, the large scale roughness is again the major factor. However, for
backscattering at low grazing angles the second term in Eqg. (74) is
predominant. Hence, it is only at low grazing angle backscatter that
the small scale roughness can contribute and only then if it has an

appreciable rms slope value.

Let us summarize the preceding arguments. For a composite

surface model to be useful the following conditions must be met:

>
hy >»h,

>
N hl ,

>>
S, Sq
The second condition merely implies that the high frequency limit
must not have been reached since the scattered intensity is then
strictly slope dependent, and the small scale roughness will dominate
the scattering effects at all angles. Finally, for physically con-

sistent results to be obtained for both forward- and backscattering,

shadowing considerations must be employed.
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